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A model for a bound quark-antiquark system is constructed from quark spinor 
equations and the associated pseudoscalar massless interaction potential equa- 
tions in a way departing from conventional relativistic quantum mechanics. 
From the so-constructed covariant meson equations, linear confinement arises 
naturally. Nonlinear radial equations for the pseudoscalar and vector mesons in 
the rest frame are derived without approximation. An internal complex space is 
introduced for representation of the quark flavors. Quark masses are generalized 
to operators operating on functions in this space. A simple model is proposed 
for the meson internal functions and mass operators producing the squares of 
the average quark masses as eigenvalues. The present space-time model calls for 
a particle classification scheme different from the usual nonrelativistic one. 
When combined with the internal model, it may account for the gross structure 
of the meson spectra together with the form of an empirical relation. Upper 
limits of bare quark masses are estimated from simplified analytical solutions of 
the radial equations and agree approximately with the bare quark masses 
obtained from baryon data in a companion paper. The radial equations are 
solved numerically yielding estimates of the strong interaction radii of the 
ground state mesons. 

1. I N T R O D U C T I O N  

In the many  at tempts to account  for the had ron  spectra in the years 
after the proposal  of the quark  hypothesis of G e l l - M a n n  and Zweig dur ing  

the early 1960s, the Be th~Sa lpe te r  (BS) equat ion,  in its various simplified 
forms, has natura l ly  emerged as the d o m i n a n t  start ing point.  In  the mid- 

1970s, q u a n t u m  chromodynamics  ( Q C D )  was advocated,  in the wake of 

the advance of the electroweak gauge model  of Weinberg  and Salam, as the 

theory for strong interact ions (e.g., Particle Da ta  Group,  1990). Fol lowing 
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this development, a hadron spectra model was proposed (de Rfljula et al., 
1975) which includes some essential phenomenological and unique features 
of QCD but is still based upon startifig points which may be regarded as 
some coarse approximation of the BS equation. This and related 
approaches have been pursued and improved upon by many authors, 
notably Isgur and Mitra [e.g., see references in Lichtenberg (1987)], result- 
ing in a large body of literature, part of which has been reviewed by 
Lichtenberg (1987). 

Many of these QCD-oriented models yield good and encompassing 
but parameter-dependent and incomplete agreement with data. These have, 
however, among numerous difficulties, two main ones. In the first place, the 
confining potentials employed are in principle ad hoc assumptions, as QCD 
has not been proven to be confining. Second, the BS equation has been 
simplified in so many ways that it is not possible to estimate adequately the 
consequences of the various approximations, notably departure from 
relativity. It is therefore desirable to replace the QCD-oriented BS equation 
approach by one free from these difficulties. 

The purpose of this and a companion paper is to present such an 
approach. The present model consists of a main space-time part and an 
internal part. In the former, approaches based upon conventional rela- 
tivistic quantum mechanics are abandoned. Instead, quark and antiquark 
spinor equations are multiplied together and the product wave functions 
subsequently generalized to meson wave functions. The quark and the 
antiquark are assumed to interact via a strong massless pseudoscalar 
potential. The multiplication and generalization method is also applied to 
the associated potential equations. In the rest frame, the equations so 
obtained can be separated into a set of singlet and a set of triplet equations. 
These can be reduced to sets of three-dimensional equations in which a 
linear type of confinement arises without approximation. For pseudoscalar 
and vector mesons, the three-dimensional equations further reduce to one- 
dimensional nonlinear integrodifferential equations. An approximative 
analytical solution to these equations is obtained. This part is treated in 
Sections 2-4 and 6-8. 

The second part of this paper deals with internal aspects of quarks and 
mesons. The composite quark-antiquark nature of mesons is emphasized at 
the expense of conventional unitary symmetry group classification. Internal 
space is introduced as well as mass operators operating on functions in this 
space. The approach draws upon analogy to that of the space-time part and 
puts space-time and internal coordinates on an equal footing. A simplified 
internal function and mass operator model is presented. This part is treated 
in Sections 5 and 9. 

Application to data and discussions are given in Section 10. 
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2. BASIC IDEA 

Conventional relativistic quantum mechanics and quantum field 
theory, from which the BS equation can be derived, and Pauli's spin- 
statistics theorem have been constructed for observable particles and fields. 
Therefore, they do not have to hold in their entirety for quarks and QCD 
gauge fields, which have not been observed. This is in contrast to the 
"standard" electroweak gauge model, which describes observed leptons and 
gauge quanta. Therefore, quarks in hadrons do not have to obey Pauli's 
theorem, so that "color" in QCD, introduced at first to appease this 
theorem, is not necessary. The role of color may be taken over by the 
internal coordinates to be introduced later. 

Similarly, the BS equation does not have to hold for quarks in 
hadrons. This is made plausible by considering a ground-state meson 
whose BS wave function has 16 components, far exceeding the minimum of 
4 wave function components (1 for singlet and 3 for triplet) needed to 
specify the orientations of the meson externally. The constituent particles 
of positronium, successfully accounted for by the BS equation, can in 
principle be separated and obey Dirac's equation. The quark and antiquark 
in a meson cannot be separated; the meson may therefore require a 
description different from that given by the BS equation. 

In the absence of guidance from conventional field theory, the last 
paragraph provides a clue to the construction of hadron equations. Other 
hints are provided by the spinor form of the constituent quark or Dirac 
equations and by hadron data. The way in which these equations are 
constructed below is basically heuristic. Its choice is in principle free as 
long as the resulting equations are Lorentz covariant and can account for 
data, in the spirit of logical positivism. 

3. HEURISTIC CONSTRUCTION OF A BS EQUATION 

A clue to the construction of the meson equations below is provided 
by the following heuristic construction of a BS equation in the ladder 
approximation. Consider two interacting spin-l/2 particles. Particle A with 
mass m A is acted upon by a massless pseudoscalar potential VpB generated 
by particle B with mass rn B and vice versa. Each particle is described by a 
Dirac equation: 

(iT~c~I~- mA) ~/A(XI): --~5A VpB(XI) ~-]A(XI) (3.1) 

(i]:B ~IIv -- rna) 0B(XII) = -- )~5B VpA(XII) ~/B(XII) (3.2) 

where xi and xi~ are space-time coordinates of particles A and B, respec- 
tively. Some of the symbols are defined in Appendix A. Multiply the left 
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side of (3.1) by the left side of (3.2) and do the same to the right sides�9 The 
resulting equation is put in the form 

(7~ r -- mA)(y~C3nv -- roB) ~/.~(XI) 0B(XII) 

= Vp~(xi) VpA(XII)TSATS,OA(X~) qJs(X,,) (3.3) 

Assume now, in an ad hoc manner, that the product functions in (3.3) 
separable in x~ and xn can be generalized into nonseparable ones due to 
the mutual interaction of A and B: 

OA(XI) ~/B(XII) ~ I/J(XI, XII ) (3.4) 

VpB(XI) VpA(XII) --~ ~Bs(IXI -- XII l) (3.5) 

Substituting (3.4) and (3.5) into (3.3), we obtain a BS equation in the 
ladder approximation, gJ(xl, Xn) is now a 16-component BS wave function 
amplitude and ~bBs(IXi--xnl) some interaction function depending upon 
the specific form of the pseudoscalar interaction. 

4. CONSTRUCTION OF SPINOR MESON EQUATIONS 

As was mentioned in Section 2, the BS wave function has too many 
components for mesons. A clue here is given by a form of Weinberg's 
(1964) equations, which for second-rank symmetric spinors read 

ai)  c d  _ _  2 a c  a w a~ Zba(Xw)-- --mwO (Xw) 

a c  X - -  c3,~&0w&0 ( w)-  --m~z~3(x,,,) 
(4.1) 

Here, m~ is some constant mass and Ow and xw are the same as those in 
Appendix A with the subscript I--* w. The 0 and Z have six components, 
fewer than the ten components of the symmetric part of the BS wave 
function (3.4). 

The quark and antiquark in a meson are assumed in this paper to act 
upon each other via a strong massless pseudoscalar interaction. This is 
supported by data which are consistent with a scalar confining potential in 
mesons (Lichtenberg, 1987). Equations (3.1) and (3.2) are now reinterpreted 
to represent a quark qA and an antiquark g/B, respectively, under mutual 
massless pseudoscalar interaction. This is possible since (3.2) is covariant 
under the charge conjugation transformation 

�9 2 , ~kB(xn) --* tTB~OB(Xn) (4.2) 
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which converts quark qB to antiquark qs- The above reinterpretation is not 
to be taken literally, as it implies that quarks can be observed. Rather, (3.1) 
and (3.2) now serve as means in constructing the meson equations. The 
same holds for the following potential equations to be attached to (3.1) 
and (3.2): 

[~I VpB(XI)=gA gB~B(X,) 75B ~//B(XI) (4.3) 

[] n VpA(XH) = gB gn ~A(Xn) ?SA ~a(Xn) (4.4) 

where gA gB is a coupling constant. Some symbols employed in this Section 
are also defined in Appendix A. 

In spinor form, (3.1), (3.2), (4.3), and (4.4) are written as 

0~bZA~(XI)-  VpB(X1) ~]~(XI)= 

c X ~ IbcOA(I )  + VpB(XI) ~At~(XI) = 
d0, ~II ZBO(XII) VpA(XII) ~#~(XII) = 

aiig,f~/f(xii) -~- VpA(XII ) ~Bo(XII) = 

[] I VpB(X0 = 

[] II VpA(XII) = 

im A O~(x I) 
(4.5) 

imAZAD(Xl) 

im*O~(xn) 
(4.6) 

im*zBo(xil) 

i�89 gA g,(Ob (x~) ZBb(XI) 

-- ZBD(XI) ~bB(Yi)) (4.7a) 

i�89 gA gB(~t~(XII) )~Aa(XII) 

- gAa(xn) ~b~(xii)) (4.7b) 

where repeated space-time indices are summed and the dot implies complex 
conjugation, mB here becomes m* formally in view of (4.2). 

Following Section 3, the left and right sides of the quark equations 
(4.5) are multiplied into the left and right sides, respectively, of the 
antiquark equations (4.6). Similarly, the left and right sides of (4.7a) 
are consistently multiplied into the corresponding sides of (4.7b). The 
resulting product wave functions are then generalized into nonseparable 
forms below, similar to (3.4) and (3.5): 

ZAD(XI) @f(xII)  ~ )~b~(Xl , XII) = Zb f 

I//~(XI) )~B0(XII) ~ r XII) = ~/e a. 

zAo(x~) zBo(xi,) -~ z)o(x, ,  x , , )  = zo~ 

~/~(XI ) ~#SB(xII) _~ []lbf(xi, XII) = ~/bf 

VpB(xi) VpA(x.) --+ ~p(xi, x . )  ---- ~p 

(4.8a) 

(4.8b) 
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These relations, together with the corresponding generalization for internal 
functions and operator in (5.3) below, constitute the basic hypothesis of the 
present model and mark the departure from conventional relativistic quan- 
tum mechanics. 

The equations so generalized read 

~ab ~-dd ~ ~ab d I /  jlla,,,~ k d -  I ZbbUII --  ~ P ~  lad ' s -  - -  mAm*l~ ad VpAU I ~ - -  --pBW~'JII -- 

- -  - -  V p A ~ i k b $  d, n t- - -  m A m * Z ~ . o  (4.9a) Oiob ob fons~  $ p  )~z.o b o f _ V p B Z o ~ H f  o - 

Oa; , , f  2 a " , a I Z,b~IlfO - -  ~)pI//~ -l- VpA6~fb)~bd - -  V p B @ a f ( ~ i l f k  = - -  mAmB@ o 

b ~d d , ~ d _ - - m  m *  ,a (4.9b) ~Ic?b~k~II -- ~ P ) ~ - -  V p A ~ I d b l / l b d - [ -  V p B Z b b ~ I I  - -  A B ~ 6  

[ ] i D i 1 r  2 a a "4g A g B [  O b ( X I I '  X I ) ( Z b ( x I I  ' XI))* 

-~- )~b(Xli , X I ) ( ~ ( X i I ,  Xi))* -- I p a b ( x x i ,  Xi)(Xci~(Xll, Xi))* 

-- )~d~(Xli, X i ) ( I c t a b ( x i i ,  XI))* ] (4.10) 

where )~d means ?X. Equations (4.5)-(4.7), (4.9), and (4.10) constitute a 
self-consistent set of equations describing, tentatively, a quark qA(OA, ZA), 
an antiquark 0B(~bB, XB), a rank-2 tensor field (O ~a, Z~), and a mixed rank- 
2 tensor field (O~, ;g a) interacting via VpA, VpB, and ~bp. In the absence of 
interactions, (4.9a) reduces to the Weinberg equations (4.1) in the limit of 
X I ~ Xii = X w with m A "--+ m* = mw. 

Consider now a possible representation of mesons by this set of equa- 
tions. The mesons are obviously represented by the mixed tensor fields ~ .  
and )~ in (4.9b) and (4.10). Since no free quark exists, the quark and anti- 
quark fields of (4.5) and (4.6) can be put to zero. From (4.7) it follows that 
also VpA = V~,B----0, in agreement with absence of massless pseudo scalar 
particles. Due to the covariance of quark and antiquark wave equations 
under (4.2), the antiquark equations may also be reinterpreted as quark 
equations. In this case, ~ a  and ;(co of (4.9a) are associated with what may 
be called a diquark. This arbitrariness in interpretation and apparent 
absence of free diquark suggest that $~d and Xoo can likewise be dropped. 
With these interpretations, (4.9a) and the last two terms in the brackets of 
(4.10) also drop out and (4.9b) and (4.10) become 

?~bZ~b(Xl, Xn)~nFO = (~bp(Xi, x n ) -  M2)  O~(xi, Xn) (4.11a) 
b 2 d 

~ l ~ b @ k ( X i ,  Xli) ~d ~II = (~P(XI '  XII) -- Mm) Zg'(XI' XII) (4.11b) 

[~i ~ I I ~ p ( X i ,  X l i ) =  1 g2  g2 Re[0~(Xl i ,  XI)(Xb(xII, Xi ) ) ,  ] (4.12) 

where Re denotes real part and r o A m *  has been replaced by M~m according 
to the assignment below (5.4). These are the space-time equations assigned 
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to mesons. Lorentz covariance is manifest from their spinor form. Under 
spatial reflection, (4.11a) and (4.11b) turn into each other, (4.12) is 
invariant, and ):o(x i , ~  o xi, x~ Xli) ~ O~(xi,~ o - x l ,  x~ - x H )  together with 
the same relation with Z *-~ 0. 

The self-consistent nature of these equations is similar to that of the 
usual basic equations for pion-nucleon scattering; the difference lies in the 
order of the equations. 

5. I N C L U S I O N  OF INTERNAL COORDINATES 

Hadrons are also classified by internal properties, like up, down, etc. 
Let z 1, z 2 . . . .  , z n be a set of complex variables providing a space in which 
unitary transformations U, can be carried out (e.g., Btg and Ruegg et aL, 
1965; Sharp and yon Baeyer, 1965); Let the up (u), down (d), strange (s), 
charm (c), and bottom (b) flavored quarks be represented by ~l(z), Ce(z), 
~4(z), and ~5(z), respectively, transforming like z l , . . . ,  z s under U~. 
Let (zv) * =zv and (~V(z))*= r be associated with the corresponding 
antiquarks. Here, z denotes z v and zv with v = 1, 2 . . . .  , n. 

Equations (4.5) and (4.6) are now generalized to include internal 
properties; (4.5) is multiplied by ~ ( z i )  from the right with mA therein 
replaced by an internal operator rnAop(z ~, O/~zl) and (4.6) is multiplied by 
~r(ZlI) with m* replaced by mBop(Zn, O/~zii). These now become 

~IbXA~(X,) ~P(zO-- VpB(x,) ~'a~(x,) ~(Z~) 

= imAop(ZI, O/~ZI) ~J~A(XI) ~,(Z,)  (5.1a) 

e,~<~2(xO r + vpB(x,) z~(xi) ~,(zi) 

= irnAop(Zi, ~/Oz~) ZAD(Xl) ~P(zI) (5.1b) 
dO ~IIZB~(XlI) ~Br(ZII)- VpA(Xli ) ~d(xII) ~Br(ZII) 

= i m ~ o p / Z i i  , (~//~zii) I/ld(xii) ~Br(ZII) (5.2a) 

OIIOf~/f(xII) ~Br(ZII) @ VpA(XII) ZBD(XII) ~Br(ZII) 

= im*op(Zn, ~l~zii ) XBk(XII) ~Br(ZI1) (5.2b) 

~ , (x i )  CP(zI) and )~AD(X~)CP(zI) in (5.1) now represent the total quark 
wave functions. Equations (5.1) and (5.2) are multiplied together and the 
generalization (4.8) is repeated. In the resulting equations which replace 
(4.9), the generalizations 

~ P (z,) ~B,(ZH) ~ C P~(z,, Zn) (5.3a) 

mAop(Z~ ,  ~r m*op(Zii, O/?zn) ~ m2op(Zx, ?tOzi, ZII, /~/~ZII ) = m2op (5.3b) 

902/32/7 4 



1118 Hoh 

are made by formal analogy with (4.8a) and (4.8b), respectively. Analogous 
to the right sides of (4.8), the right sides of (5.3) are generally not separable 
in z~ and zii. Repeating the reasoning following (4.10), (4.11) is replaced by 

~r~z[(x~, x.)  ~"r(Z~, Z~I) eiISO 
= (Op(x i ,  x n )  - mzop) r  x , i )  U'r(ZI, Zn) (5.4a) 

b ~I,Sbl/A~(XI, XII) ~Pr(ZI, ZII)a~ d 

, z f l x , ,  = ( r  xH)  - m2op) x i i )  ~PAzI, zi i )  (5.4b) 

The total meson functions are then ~(bf(Xi, Xii ) ~Pr(ZI, ZII ) and 
~tb(xi, XII ) ~Pr(ZI, ZII), which have to be eigenfunctions of m2o p having an 
eigenvalue M2m . Equation (5.4) can be separated into a space-time part 
(4.11) and an internal part 

, = M . , ~  r (Z i ,  ZII ) (5.5) m2op(Zi, O/~zl, zii,  O/~zii ) ~pr(Zi Zii) 2 p 

Equations (5.4), (5.5), and (4.12) are the proposed spinor meson equations 
in the present model subjected to the symmetry condition (9.2) below. 

6. R E D U C T I O N  O F  THE SPACE-TIME EQUATIONS 

Consider first (4.11) and (4.12) and put 

b ~ ( X I ,  XII) = ~lbk(xi, X I I ) ~  

zd(xI, XiI) = Z~e(Xi, XII)~ .ed 

~l bb = @0(Xi, XlI) -- o'bs Xii ) 

Z~e = Z0(xi,  x i i )  + ~e~'(xI ,  XlI) (6.1a) 

Here e ed and e~ are the usual antisymmetric index raising and lowering 
operators and ~ are the Pauli matrices, so that 

, , (  , i +  ~ !(,/,., r r e r )=2 ,,-2- 
(6.1b) 

'=~,e~-,,-i,l~'= ,/,' / ( r 1 6 2 1 6 2 1 6 2  

Thus, the singlet ~ is the antisymmetric part ~O~ = - C b  a, while ~g' is the 
symmetric part f f~-  b ~--r The same also holds for Z0 and ~'. 

Introduce the relative and laboratory conditions 

X'U= X~I-- X~, Xu=(1--am)X~-t'-amX~i (6.2) 
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where am is an arbitrary constant. Consider a free meson and let 

~'o(xt, Xu) = e-iK~x~'o(X~'), W'(xi ,  x n )  = e-m~x~'w'(x~) (6.3) 

together with analogous expressions for X~ and •'. Here, K~= (E0, - K ) ,  
E o denotes the rest mass of the meson, and K its momentum. With (6.1) 
and (6.2), (4.11a) is written in the form 

[a,=(1 - a~) (E  2 + K 2) + 0o 2 + A + i(1 - 2am)(EoOo - K~)Z~ 

+ (2~o# + i(1 - 2am)(EoO - K0o) - 2a,~,(1 - am) EoK + K • ~] *Z~ 

+ [am(1 - am)(E2o - K 2) + 0o 2 - A + i(1 - 2a=)(Eo #o + Ka)]  '~Z' 

+ Eo~(0xz'  ) + [2 .g  + 200 + i(1 - 2a,,~)(Eo - ~K)] gZ' 

- [i(1 - 2am)(0o + *#) + 2am(1 -- am)(Eo -- *K)]  K x' 

+ (0 + ~o*)(K • Z') (q~P 2 , = - mm)(4'o - *V') (6.4) 

where 0o = O/Ox ~ ~ = c~/c~x and 3 = d~. Equation (4.11b) becomes the same 
equation with Z ~ ~ and opposite signs for the cross products. Solutions 
having the following relative time x ~ dependence are sought 

cP(x~) = ei~~176 q~ = r u Z0, ;(' (6.5) 

where co o is the relative energy among the quarks. The arbitrary constant 
a m is chosen to be 

am = coo/Eo + �89 (6.6) 

The time dependence of r and X~ then takes the form of 
e x p [ - i E o ( x ~ 1 7 6  The rest frame K = 0  will be worked out below. 
The singlet and triplet parts of (6.4) can now be decoupled. Equation 
(4.11b) is treated in the same way. The set of decoupled equations reads 

(E~/4 + A) Z~)(x) = (~bp(x)- M2m) ~b~(x) (6.7a) 

(E2/4 + A) $~(x)= (~bp(x)- M2m)X~(x) (6.7b) 

( - E ~ / 4 + A ) z ' ( x ) - Z # ( ~ Z ' ( x ) ) - E o ~ •  (~bv(x) 2 , = - M m )  ~r (x) (6.8a) 

( - E ~ / 4  + A) V'(x) - 2~(g~'(x)) + Eo ~ x ~ ' (x)  = (~bp(x) - M2m) Z'(x) (6.8b) 

Here q~v(x) is found by combining (4.12) with (6.1)-(6.3) and (6.5); 

AA~bp(x) =g2 A g~ R e ( u  x) Z ' * ( - x ) -  ~ ( - x )  Z~*( -x ) )  (6.9) 

which also holds for K # 0 and without using (6.6). 
Let S denote the spin of the ground-state mesons; then S = 0 and 1 refer 

to the singlet functions ~,~ and ;(~ and the triplet functions ~ '  and Z', 
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respectively. The lowest order equation obtaitlable from (6.7) is found by 
putting O;(x)= + Z;(x). Under spatial reflection, (6.2) and a statement 
below (4.12) show that the S =  0 meson wave functions transform as 

U~(x), z;(x)] = [~ (x ) ,  +r 

[z~(-x) ,  r  = + [ r  + r  

In the absence of angular excitation, r the + and - signs 
then refer to J~ ( J = t o t a l  spin, P = p a r i t y ) = 0  + and 0 -  or to scalar and 
pseudoscalar mesons, respectively. For 0 +, (6.7) leads to a sign change of 
~bpo in (7.3) below and nonconfinement. For 0 - ,  (6.7) becomes 

2 2 (Eo/4 - Mm + ~ + ~bp(x)) 6o(X) = 0 (6.10) 

~t0(x) = ~ ( x )  gA g s (6.11) 

which together with (6.9), putting ~ '  and l '  to zero, form a set of nonlinear 
equations describing S =  0 mesons at rest. Analogously, (6.9) without the 
0 t  ,u,t~ o,~o term and (6.8) describe S =  t mesons at rest. 

Equation (6.10) shows that E 2, the square of the meson mass, consists 
of a bare quark mass part M~, a quark-antiquark interaction part ~bp and 
a kinetic energy part A associated with the relative motion of the quark 
and antiquark. 

For slow mesons or small K, (6.4) shows that ~',  Z' and q/~, Zg will 
be of order [KI for S =  0 and 1, respectively. Thus the triplet and singlet 
wave functions corresponds to the small and large components for S = 0 
and vice versa for S = 1, analogous to those for S = 1/2 particles described 
by Dirac's free particle equation. 

For very fast mesons, K = (0, 0, K ~  oo); ~bp, M~ and the ~ terms in 
(6.4) can be neglected and the required relation Eo 2 = K 2 is satisfied if 

co0=0, Z~ =Z~ (6.12a) 

coo = +K, Z~ = -Z~, Z'l = A-iz~ (6.12b) 

where Z' = (;<'1, Z~, Z;). The same result also holds for Z ~ ~9. 

7. LINEAR CONFINEMENT AND THE S = 0 EQUATIONS 

The Green's function for (6.9) satisfies 

AAG,~(x, x ' )=  6 ( x -  x') 

1 
G~(x, x')-- - ~  Ix- x'l 

(7.1a) 

(7.1b) 
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There are, however, also homogeneous solutions to (6.9) proportional to 
Ixt 2, Ix[-~, and a constant. JXl1-1 and ]xn[ -~ are also proportional to the 
Green's function associated with the massless pseudoscalar interaction of 
(4.7) if the quark wave functions @ and • have the time dependence of the 
type of (6.5). In this case, (4.7) also allows a constant as a homogeneous 
solution. Now this time dependence cannot be assumed in general. In such 
cases, the right sides of (4.7) will be time dependent and the constant as a 
homogeneous solution to (4.7) must vanish, apart from a modification of 
the Green's function itself. The same holds if the interaction is assumed to 
be slightly massive. Since the constant homogeneous solutions to (6.9) and 
(4.7) are of the same nature, the former can also put to zero here, in view 
that the present equations may be some idealization of more general ones. 
It can be shown that the homogeneous solution Ix] z to (6.9) is also a 
counterpart to the constant homogeneous solution to (4.7) and can there- 
fore likewise be put to zero. 

With these considerations, (6.9), (6.11), and (7.1) for the S =  0 mesons 
can be combined to yield 

1 
q~p(X)----- --~-~ ~ d3x ' :  [ x - x ' l  [tPo(-x'){2+d,~o/[X{ (7.2) 

where dmo is a constant. The nonlinear nature of (6.7)-(6.9) makes it 
possible for the coupling constant gn gB to be absorbed into @o as in (6.11). 
At large separations, (7.2) shows that ~bp(x) oc -Jx]  is linearly confining. 
Near x = 0 ,  the 4x1-1 term dominates. Apart from its coupling to the 
S = 0  equation (6.10) via ~o, (7.2) is just the type of potential success- 
fully employed in potential models for mesons (de Rfljula et aL, 1975; 
Lichtenberg, 1987). 

The linear confinement arises naturally from the formalism and cannot 
be interpreted in conventional terms, as the construction of the theory 
departs from conventional methods. Such a linear potential is known in the 
literature in another context. Further, ~,o(X) is fixed by the nonlinear 
equations (6.10) and (7.2) and its interpretation is also unknown. Should 
the theory be useful, new concepts may then be formed to join existing 
ones to account for the mathematical formalism and data in words. 

Equations (6.10) and (7.2) are the space-time part of the S = 0 meson 
equations and form a single nonlinear integrodifferential equation in three 
dimensions. Let now x be converted to spherical coordinates (r, ,9, ~o). In 
the absence of angular excitation, @o(X)--+ ~bo(r ) and ~be(x ) ~ (~e(r). The 
three-dimensional equations are then reduced to the following equations 
equivalent to a nonlinear ordinary singular integrodifferential equation: 

[E~o/4 - M2m + ~2/QrZ + 2~/~3r + ~beo(r)] ~ko(r) = 0 (7.3) 
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Ceo= _ l [ f s  dr, O2(r,) r,2(3r + r,2/r) 

;; ] + dr' O2(r ') r'(3r '2 + r 2) + dmo/r (7.4) 

where E0o replaces Eo associated with S = 0. These equations are assigned 
to pseudoscalar mesons, as is shown in the derivation of (6.10). 

In the r--* 0 and ~ limits, 

~9o(r ~ 0 ) = d  o or d'or -I  (7.5a) 

;/ Cpo(r ~ 0 )  = - -  I r3ffZ(r) dr + dmo/r ( 7 . 5 b )  

I]/0(/" -'-)" 0(3 ) = ,4 ( /~1/3 ~.]1/2 1/3 3/2 "oootemO" ~ K1/3(2(flmo r) /3) (7.6a) 

fo Cpo(r-+ c~)= - � 8 9  r'202(r')dr'= - / ~ o  r (7.6b) 

where K denotes the modified Bessel function of the second kind and the 
d's are nonfree constants fixed by the nonlinear equations. Should eigen- 
solutions exist, (7.3)-(7.5) can be solved numerically on a computer. 

An estimate of the lower limit of the eigenvalue of (7.3)-(7.5) can be 
obtained if it is assumed that the solution Oo(r) is regular at r = 0 and is 
largely confined to that region, so that the integrals in (7.4) can be neglected. 
A hydrogen atom type of spectrum is then found: 

E ~ o / 4 -  M 2 = - (dmo/2(nro + 1)) 2 (7.7) 

where nro denotes the radial quantum number. 
The more general (6.10) and (7.2) are not separable, due to the 

angular dependence of Cp(x). However, this angular dependence vanishes 
at the r ~ 0 and ~ limits, where fro(X) can be separated, 

~Oo(X -+O)~dofYlm(O,  q~) or d'olr-l-lYlm(O, r (7.8) 

Oo(X ~ ~ ) =  do~t(flmolr) m K1/3(2(flmotr)l/2/3) (7.9) 

Here, the d's are constants, Ylm is the usual spherical harmonics, and /~m0t 
is given by (7.11b) below. In these limits, (6.10) becomes 

l E V I 4 -  M2m + ~2/~r2 + 2~3/0r- I(l+ 1)/r 2 + Ce(x ~ o ) ]  ~b0( x ~ o )  = 0 

(7.10) 
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with 
1 

~@(X ~ 0) = - ~ f d3x ix] I~bo(-X)] 2 + dmo/r 

~ e ( x ~ 2 ) ~ - ~ - ~ r  d3xl~o(-X)l  2 = - f l m 0 J  

(7.11a) 

(7.11b) 

assuming that a confined solution ~o(X) exists. 

8. S =  1 EQUATIONS 

For the S =  1 mesons, the counterpart to (7.2) is 

1 t" 
~bp(x) = - ~ j d3x ' Ix - x'J R e ( ~ ( - x ' )  X*( -x ' ) )  

v ( x )  = v ' ( x )  gA gs ,  Z(X) = Z'(X) gA gB 

+dml/r (8.1a) 

(8.1b) 

where dm~ is a constant. Equations (8.1) and (6.8) are the equations for 
S =  1 mesons. This set of three-dimensional equations is likewise no~ 
separable generally. In the absence of angular excitation, however, the 
ansatz 

~(x) = X~l(r)/r = + Z(x) (8.2) 

reduces the pair of three-dimensional equations (6.8) into two one- 
dimensional equations. Under spatial reflection, the S =  1 wave functions 
transform like 

N,(x), x(x)] = [~,(x), +~,(x)]  ~ Ez( -x ) ,  v ( - x ) ]  = -7- [~,(x), +~,(x)]  

The + and - signs refer to je= i -  and 1 +, respectively, when (8.2) 
holds. Analogous to the 0 + case preceding (6.10), the 1 + equation leads to 
nonconfinement and is therefore dropped. The 1-  form of (6.8), (8.1), and 
(8.2) can be worked out to yield 

2 2 [Eol/4-Mm+•2/Or2+2g/•r-2/r2+qkm(r)] ~l(r) = 0 (8.3) 

~[fo dr' ~,~(r')r'2(3r +r'2/r) ~p/( r )=  

+ dr' 0 ~ ( r ' ) / ( 3 / 2  + r2) + dml/r (8.4) 

where Eo~ is associated with S = 1 and replaces Eo. These equations are 
essentially the same as the 0 -  equations (7.3) and (7.4) except for the extra 
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- -2 / r  2 term in (8.3) signifying its S =  1 nature. Therefore, (7.5) and (7.6) 
hold with the subscript 0 replaced by 1, except for the right side of (7.5a), 
which is replaced by dl r or d'~ r-2, and the redefined dl are similar nonfree 
constants. By making the same assumption as those preceding (7.7), it is 
seen that 

2 2 E o l / 4 -  M m = - -  ( d m l / Z ( n r l  --}- 2)) 2 ( 8 . 5 )  

where nrl denotes the radial quantum number. 
Similar to the S=O case, ~be(x ) of (8.1) is also independent of the 

angles in the r---, 0 and m limits and takes a form analogous to (7.11): 

1 
~be(x ~ O) ~ -~-~ f d3x Ixl R e ( q ( - x ) z * ( - x ) ) + d m ~ / r  (8.6a) 

if ~be(x --* oo) ~ - ~-~ r d3x R e ( ~ ( - x )  Z * ( -  x)) = - fl,~xlr (8.6b) 

In these limits, the generally nonseparable (6.8) can be separated and 
reduced to one-dimensional equations. These and their solutions are given 
in Appendix B. 

Should solutions for all r exist for these in effect sixth-order equations, 
(B5) shows that there exist several solutions for given 1 and radial wave 
number. This calls for a particle classification different from the usual 
nonrelativistic one (Particle Data Group, 1990). 

9. M O D E L  FOR INTERNAL F U N C T I O N  A N D  MASS OPERATOR 

In the above sections, M ~  has been regarded as a constant, formally 
obtained from (5.5). To determine its value, a simple model of the internal 
meson function (Pr(ZI, ZII ) and mass operator m2o p of (5.5) is considered 
below. For simplicity, let z~ = z, ~/Oz~ - Oz, Zu = u, and O/&ii  =- Ou. T h e  
simplest form of internal quark functions is ~ P ( z i ) = z  p and ~Br(zn)=u, 
conventionally adopted in the literature. Their product zPu,  is the corre- 
sponding meson internal function. Since z~ and zn are in principle not 
observable, an interchange among them cannot be detected. Thus, the total 
quark wave function of Section 5 can for instance be )~Ae(x~)~P(zi) or 
XAe(XI) ~P(zII). This degree of freedom allows an internal symmetry so that 
not only ZPUr, but also z , u  p may, be associated with the same meson. The 
right side of (5.3a) can thus be ~Pr(ZII, Z~) also. Thus, the simplest 
generalized internal meson functions symmetric and antisymmetric in z and 
u are 

{ s P r ( Z I ,  ZII ) : ~sPr  = ZPUr "3i- Zrbl p -~ {S r  p ( 9 . 1 a )  

~APr(ZI, Zn) = ~A p, = ZPUr -- Z,U p = -- r A, p (9.1b) 
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The associated internal index symmetry mirrors the space-time index 
symmetry of (6.1b). For agreement with baryon data, it is postulated in 
Section 4 of Hoh (n.d.-a) that the total hadron wave function must be 
symmetric under simultaneous interchange of any two pairs of quark 
indices. This is equivalent to the assumption of the so-called symmetric 
quark model and implies that 

~/~(XI ' XII )  ~ p r ( Z i  ' Zi i )  b a = ~/a(Xi  ' X l i )  ~ r P ( Z i  ' Zi i )  (9.2) 

Combining (9.1), (9.2), and (6.1b), it is seen that the total S = 0  
t p t ~ p  and S =  1 meson wave functions are ~90~A~ and ~g ~sr, respectively. The 

postulate renders these to be unique by excluding the antisymmetric 
combinations, much like the limiting effect of Pauli's theorem for identical 
particles in conventional quantum mechanics. 

Inserting the simplified quark internal functions into (5.l) and (5.2) 
and identifying with (4.5) and (4.6) leads to 

maop = ~ ms(Z~?~s + uSc~us) (9.3a) 

U s m*op = ~" ms(zsc~* z + sO3,) (9.3b) 

where mA--* mp and m~ ~ mr may be called the bare quark masses having 
flavor p and antiflavor r and 

(9.4) 

Here z and u may be regarded as creation operators standing to the left of 
Oz and Ou considered to be annihilation operators, in agreement with 
normal ordering in field theory. From (5.3b) and (9.3), the following 
general form can be written: 

m2op=m2op(zP, uP, z,.,ur, c~zp+C~up, C~;+~?;,mp, mr) (9.5) 

Equations (9.3), (5.1), and (5.2) also indicate that m, is associated 
with the annihilation operators and enters in the form of m,0zs and m~,~ 
and their complex conjugates. One of the simplest forms of (9.5) having 
dimension mass squared is 

mzo p = mp(zPC~zp + mr(Zrrqr + H?u) (9.6a) 
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where the bracketed terms can be said to be half of a bare quark mass 
summing operator. When applied to (9.1), (9.6a) yields the eigenvalue 

M L  = - ~ ( m p + m ~ )  2 (9.6b) 

Equation (9.1), however, does not represent ~o, pO, co, i/, ~/', . . . .  
mesons which involve two and three quark-antiquark pairs. Since t h e  
space-time part is the same for different flavors, only (9.1) and (9.6a) need 
modification. Thus, 

~sPp = Zt bll -[- Z 1 bi t Jr- (zZblz -[- Zzbl z) (9.7) 

is assigned to the ~o (upper sign) and pO (lower sign) mesons. For these 
states, the generalization procedure of Section 5 implies that m2op depends 
upon all the quarks entering (9.7). As (9.7) possesses an additional sym- 
metry in the interchange of the indices 1 and 2 and is furthermore invariant 
under complex conjugation, the general form of m2o p is allowed to possess 
similar properties. The corresponding simplest form of m2o p having (9.7) as 
eigenfunction can be written as 

1 1 2 

having the eigenvalues 

1 
+ ~  [mZ(z2Ozl + u2~ul)(z2#~ + u2Olu) 

+ m2(z'Oz2 + u~O.2)(z, ~- + ulO])] 

(122)1  M 2 1_+ = ~  ( m l + m 2 )  

(9.8a) 

If the two indices become one index, the extra symmetrizing terms in the 
brackets of (9.8a) have to be excluded and (9.8a) reduces to (9.6a) with 
Q = 0. Equation (9.7) with u p ~ - u  p is assigned to the zc ~ meson and an 
unobserved 0 -  internal isosinglet, here denoted by p0 (lower sign). When 
applied to by (9.8a), (9.8b) is again obtained. 

The ~-meson internal function is 

~APp(q) = Z l U l - - Z ~ U  1 + Z2U2 - - z 2 u Z - - 2 Z 3 U 3  + 2z3 u3 (9.9a) 

For a simplified treatment, let the indices 1 and 2 collapse into one index 
1; (9.9a) then has the same form as (9.7) with the lower sign, equations 

(9.8b) 
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(9.8) with index 2 -* 3 then apply. Let now the index 1 component be split 
back into index 1 and 2 components and repeat the procedure from (9.7), 
with the upper sign, to (9.8); one finds 

l(m~ + m  2 +2m 2) M2m(r/) = a (9.9b) 

The t/'-meson internal function is 

3 

~APp(r/1)= ~ (zSus--Z~UT) (9.10) 
s = l  

Equation (9.8a) is now generalized to include a third index in the form of 
the additional term m2op(~)/2 and four more terms in the brackets to 
include the combinations of indices 1 and 3 and of 2 and 3. When applied 
to (9.10), it yields the eigenvalue 

2 / 1 2 ~(m 1 m22+ Mm( ~ )=  + m~). (9.11) 

10. APPLICATION AND DISCUSSION 

In the following, electroweak effects as well as the difference of the 
v and d quark masses will be neglected. Consider first the J e  = 0 and 1 
mesons. Their space-time parts are accounted for by (7.3), (7.4), (8.3), and 
(8.4). Dividing (7.3) by Oo(r), it is seen that the eigenvalue E Z o / 4 - M  2 
depends only upon Oo(r) and some constants. A similar statement holds for 
(8.3). The difference between these two expressions can be written as 

E21 - E~o = Ll(n,a) - Lo(n,o) (10.1) 

where L0 and L1 are functions of the-radial quantum numbers. The 0 -  and 
1 splitting arises naturally from the pseudoscalar interaction among the 
quarks without recourse to the hyperfine splitting mechanism in QCD 
inspired type of treatments [2.3]. 

A prediction is that all the 0 -  and 1 mesons have the same radial 
wave functions ~0o(r) and r respectively, independent of their quark 
content. The strong-interaction radius of all pseudoscalar mesons is the 
same. A similar statement holds for the vector mesons. Another prediction 
is the lack of unexcited 0 + and 1 + states mentioned before (6.10) and (8.3), 
in agreement with data. 

Equation (10.1) agrees with data/ 'or  the n, = 0 and flavored mesons, 
i.e., ~, K, D, D,, B(0 ) and p, K*, D~, D*, B*(1-)  with 
L l ( 0 ) - L o ( 0 ) ~ 0 . 5 6 G e V  2 (Lichtenberg, 1987), in spite of the large dif- 
ference between the squares of the rc and B masses. For the flavorless J/r 
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and t/c, the somewhat higher value 0.71 GeV 2 indicates that t/c is not a pure 
c6 state like J/O, but can contain up and down quarks, analogous to q' and 
tt. The absence of the 0 -  singlet pO and the 0 ss, xx, and b/~ states has 
been suggested as a consequence of U(1) gauge invariance (Hoh, n.d.-b) of 
(5.4) together with (5.5). 

Equations (9.8b) and (9.6b) show that rc ~ is slightly heavier than ~z -+. 
However, the difference, for usual bare quark masses (Lichtenberg, 1987) 
is small compared to the greater but neglected electromagnetic self-energy. 
Equations (9.6b), (9.9b), (9.11), and (7.3) predict that Eoo(q' ) > Eoo(q) > 
Eoo(K). However, the differences, assuming usual bare quark masses, are 
smaller than those of the data. 

Consider the lower limit equations (7.7) and (8.5) and take the 
difference. Making use of (10.1) for the nr = 0 and flavored mesons above, 
one finds 

d 2 o -  d~1/4 = LI(0) - Lo(0) ~ 0.56 GeV 2 (10.2) 

Assuming further that the d's are equal, (10.2) yields the estimate 
dml = dmo =0.864 GeV. Inserting this value and the measured ~, K, D, Ds, 
and B masses E0o into (7.7) and combining it with (9.6b), neglecting the 
Q's, yields the upper limits of the bare quark masses ml=rn2=0.437,  
rn 3 =0.559, m4= 1.62, m4= 1.591 (from D,), and ms =4.912. The unit is 
GeV. Repeat the same procedure for e), q), J/ip, and ]c and replace (7.7) 
by (8.5). The upper limits of the bare quark masses are found to be 
ml=m2=0.447 ,  m3=0.554, m4=1.563, and ms=4.735. Both sets of 
values are relatively close and may support the assumption dmo=dml 
above and that the Q's are small. These data also agree approximately with 
the bare quark masses estimated in an analogous manner from baryon data 
in Section 9 of Hoh (n.d.-a). 

Existence of unique discrete eigenvalue type of solutions to (7.3), (7.4), 
(8.3), and (8.4) has not been proven. Assuming the above estimates of dm, 
these equations are solved numerically by an iterative procedure. Eigen- 
value solutions satisfying the prescribed boundary conditions appear to 
converge to unique forms after a number of iterations. Two such solutions 
are shown in Figs. 1 and 2 for ml = m 2 = 0.323 in (9.8b), making use of the 
rc ~ mass. This value is less than 0.437 obtained below (10.2). The difference 
is due to the omission of the confining terms in (7.4) and (8.4), corresponding 
to ~b%o and r in Figs. 1 and 2. For the cases represented by these figures, 
the potential terms in (7.4) and (8.4) can be averaged over r weighted by 
rZlpZ(r) and rZl~(r), respectively. The ratio of the confining term to the 
Coulomb-like term in (7.4)for 0 -  slightly exceeds unity. The correspond- 
ing ratio in (8.4) for 1 is about 2/3. Further, the positive eigenvalue 



Spinor Strong Interaction Model for Meson Spectra 1129 

(LII5 

(GeV 3) 

0.[)4 

0.25 
l 

0.03 

O.15 

I).I)2 

0A 
0.111 

o 0,05 
o i ; ; i ,o h ,, 

r (GeV-I) 

Fig. l. Radial wave function and confining part of potential for pseudoscalar mesons 
obtained from (7.3) and (7.4) for dmo=0.8641GeV and Eoo/42 _M,,2 = _ 0 . 1 G e V  z 
corresponding to a bare quark mass of ml = m2 ~, Mm ~ 0.323 GeV. - ~ o  = ~eo - d m o /  r. 

(GeV 2 ) 

O.2 

10 

3 0.24 

-3 (GeV 3) (GeV 2 ) 

2.5 0.2 

I" i 0.16 

0.12 

O,O8 0.5 

o 0.04 
0 5 10 15 20 25 30 35 

r (GeV -i ) 

Fig. 2. Radial wave function and confining part of potential for vector mesons obtained from 
(8.3) and (8.4) for d,~ 1 = 0.8641 GeV and E 2 1 / 4 - - M  2 =0.04 GeV 2 corresponding to a bare 

quark mass of ml = m2 ~ M,, ~ 0.323 GeV. - ~ 1  = ~el - d,,l/r. 



1130 Hoh 

E~1/4--M,~ in Fig. 2 becomes negative when the confining term in (8.4) is 
dropped in the approximation leading to (8.5). Therefore, the confining 
term plays an additional basic role here. 

Let the strong interaction radii ( ro )  and ( r  I ) of the pseudosealar and 
vector mesons be defined by tpo((ro))/~ko(O)=l/x/~ and ~ 1 ( ( r l ) ) =  
maximum of ~'l(r), respectively. Figures 1 and 2 show that ( r o ) = 0 . 9 7  fm 
and ( r l ) = 5 . 1 f m .  Another calculation with m1=m2=0.393 yields 
( % )  = 1.0 fm. Thus, ( ro )  seems to be rather insensitive to the bare quark 
mass. Experimentally, the strong interaction radius is neither well defined 
nor well determined, but is of the same magnitude as the better determined 
electromagnetic radius. The present values are nevertheless somewhat high, 
but can be reduced if dmo and din1 exceed 0.864. 

The radially excited states such as ~(2S), ~(2S) . . . . .  can be associated 
with Ll(nrl > 0). Similarly, Lo(nro > 0) are assigned to radially excited 0 -  
states. For the angularly excited states, the nonseparability of the S = 0  
equations (6.10) and (7.2) in r and 0 equations prevents the usual non- 
relativistic l (orbital quantum number) and n (total quantum number) 
classification of mesons. Should solutions exist, they may be assigned to the 
bl, n2, K1 . . . .  mesons (Particle Data Group, 1990). 

The nonseparable S =  1 equations (6.8) and (8.1) for angularly excited 
states differ from the corresponding S = 0 ones above and the vector meson 
equations of Section 8 in that they have more component wave functions. 
Assuming that a lowest angularly excited solution exists, then the r-0 
coupling again prevents the usual nonrelativistic particle classification. The 
present classification is indicated by the solution of these equations near 
r = 0 ;  (B5) shows that there are three sets of solutions regular at r = 0  
associated with fr ~, hr, and g, which in turn are associated with }I2, Y1, 
and Y0, respectively, in (B1) and (B2). These states fit naturally the 
observed triplets av, the lightest fv, Zcv(1P), and Zbv(1P), where v=  1, 2, 
and 3 (Particle Data Group, 1990). The triplet ;(b~(2P) and the next heavier 
fv may then be assigned to the radially excited version of these states. 

The members of the triplet may be regarded as different modes of the 
same so-called particle, contrary to different particles as in nonrelativistic 
classification schemes. 

In Section 6, it was shown that 

Eo (I ) = + Eo (10.3) 

where Eo(K) denotes the total meson energy, can be fulfilled at K = 0 and 
oe. At K = 0, the relative energy ~Oo can not be determined in the present 
model but is required to vanish in a quantized treatment I-9]. In the K = oe 
limit, (6.12b) shows that COo= _+IK[ is possible. Therefore, it may be 
conjectured that COo assumes such values that (10.3) holds. 
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The K -+ oo limit considered at the end of Section 6 can also be viewed 
from another viewpoint. Equation (4.11), dropping its right sides, may via 
the inverse of (4.8) be decomposed into two massless and free fermions. This 
is in agreement with the well-known phenomenon of asymptotic freedom. 

A P P E N D I X  A. SOME N O T A T I O N S  A N D  D E F I N I T I O N S  

x~ represents the space-time coordinates .v~ = (x ~ x,) = (x ~ x~, x 2, x~). 
0~ = O/Oxf . Further, 

2 0 2 2 2 
~ = a / a ( x ~ )  - 0 / a x ,  (A1) 

o ~ i  : 6~I~ 2 : -- ~IO - -  013 

a25 =a l i  ] = - c~i0 + 69~3 
(A2) 

a ~  5 : - -  ( ~ I i 2  ~--- - -  a I 1  + i a I 2  

r = __ a l j l  = __ 8 i  1 - -  i63i  2 

These definitions also hold for the subscript I --+ II. 
Dirac's bispinor ~b g and van der Waerden's spinors ~ ,  and Z~,b are 

related by 

ZA]" = (~//A)I + (I//A)3, ZA2 = ([//A)2 + (@A)4 
(A3) 

~ : (~a)i - (~)3, ~ = (~)~ - (~)~ 

The same holds for A ~ B. 

A P P E N D I X  B. S = 1 E Q U A T I O N S  AT r-+ 0 A N D  oo 

~(x) and Z(x) are expanded into vector spherical harmonics [e.g., 
Blatt and Weisskopf (1979), Appendix B]. There are three kinds of such 
harmonics, each consisting of three series of products of Yt,,,(O, ~o) and 
Clehsch-Gordan coefficients. For given l and m, ~ '(x)  = (~b 1, ~b 2, ~b 3) and 
Z'(x) = (Z 1, Z 2, Z 3) are found to be 

(i//1 _T_ l//2)+ (zl _~ Z2) _~_ _T_(( l-~-m+ 1)(IT m + 2)) u2 
l(21+ 3) Yt+ 1m-T- if(r) 

( (l +_m -- 1)(l +_m)~ 1/2 
+-_ ~s ./ <-lm~,g(r) 
( ( l - m +  1)(l+ rn + 1)) 1/2 

r = \ ~2--TgY) _ r,+xmf(') 

{ ( l -m)( l  + m)V/2 
+ ~" l ( - ~  ) ") Yl_,mg(r) (B1)  
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( ( l +  m )( l -T m + 1)) ~/~ 

03 -- Z 3 = -- i m [ / ( /+  1)]1/2 Y,mh(r) (B2) 

~r and ;('(x) are eigenfunctions of the j2, J3, and S 2 with eigenvalues 
l(l + 1), m, and 2, respectively. Here J denotes the total angular momentum 
operator, ./3 its third component, and S the spin operator. For l - -0,  only 
one component Yl f ( r )  exists corresponding to (8.2). For I >  0, (B1), (B2), 
and (6.8) can be separated into Y~+ 1, Yz, and Yt- 1 components associated, 
respectively, with the following radial equations: 

- + M ~ - q ~ e ( x  ~ ~  - At+ 1 f ( r )  

2l f~ ~a~ 2,-1~r ('- ~)(z+ ')t 2l + i ~r + r: g(r) 

I 0 

+M~-~p(x  ~ ~  h(r) 

(; 'rl.) 
- - ~ - + M ~ - q i p ( x ~ ~  A, 1 g(r) 

2 / + 2 1 a  20_~ 5 + 2 / + 3  O t ( / + 2 ) ]  
2t+1 _ ; ~ + - - T r - J / ( r )  

+Eo2- ~ ~rr + h(r) = 0 (B3) 

02 2g l(l + 1) 
Al= ~ + Or r 2 (B4) 

These radial equations are sixfold degenerate, i.e., the six component 
equations of (6.8) yield the same radial equation. 

The standard treatment (Coddington and Levinson, 1985, Chapters 4 
and 5) of (B3) is to convert it into six first-order equations and consider 
the r ~ 0 and oo behaviors there. There are now six independent solutions. 
For r--* 0, these are 
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f = f + r  l+~, g = ( l + l ) ( 2 1 + 3 ) f ,  h = 0  

f = f  r- ' ,  g = f / I ( 2 t -  1), h = 0  

f = g = O ,  h = h + r  t, h r -I  1 

f = h = 0 ,  g = g + r t - 1  g r-Z 2 

(BS) 

where f + ,  g+_, and h+ are constants. In the r ~  oo limit, 

f = g =  f ~ f  e ,i 

h=  ho~r~- ~/Ze 

= 2(fl,~llr)3/2/3 + ~,nl rl/2 

where f ~ ,  h~, z, and e,~1 are constants. Possible logarithmic terms 
(Coddington and Levinson, 1955, Chapters 4 and 5) in (B6) are not 
included here. 

(B6) 
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